祭囃子は遠く、

祭囃子は遠く、

無職のハッピーエヴリディを書いていきます。

藤江杯いってきた話

金沢レジャーランドで開催された第五回藤江杯に行ってまいりました。

詳細はこんな感じ

地方で開かれていますが、毎回参加人数が50人を超える人気のある大会です。

参加者のほとんどが遠征者という稀有な大会なので、色々な地方のぷよらーをつまみ食いできるいいチャンスです。

僕は今回(も)ぷよらーの方に車を出していただいたので、ワイワイガヤガヤしながら大阪から金沢へーーー



まず、到着後もりもり寿司という「質の高い寿司がたまたま回っているだけ」のお寿司屋さんにいきました。

ついつい3000円使ってしまうものの僕は旅先での予算は常に無限大、財布の紐が緩いどころか底が抜けている状態です。

爽やかな顔で会計を済まし、ACぷよ通のある施設へ出陣します。



最初に初心者大会が行われるわけですが、僕の友人であり犯罪者のぽかりすくんが予選で無双していました。決勝トナメですぐ負けた

僕は出ないことになっていたため一般大会の方に全てをかけていましたが、すんなり負けてしまい真顔で音ゲーコーナーに

f:id:ta_ichi:20180226012538p:plain

しかし、先週普通に落ちて凹んでいた中伝に合格することができ、一気にウキウキモードへ

大会は結局僕の友人であるキウくんが優勝しました。おめでとう



その後は食事会があり、新潟勢を迎え予約していたゆめのゆの大部屋宿泊会場に向かいました。

部屋はこんな感じ

f:id:ta_ichi:20180226010931p:plain

一人一人のスペースも確保されている上に何と言っても「安い

入館料や部屋代込みで一人当たり3700円程でした。遠征者のみなさん、おすすめです。

「仮眠スペースなら2000円で済むじゃん!」という方々もいらっしゃると思います。

確かに少人数での利用ならその方がいいかも知れませんが、10人集まるならばこのプランがいいと思います。

それはやはり「修学旅行感」に集約されるでしょう。

こんな大部屋に男だけで泊まったらやることは一つ

恋バナ

ですよね??



はい、嘘をつきました。僕はそういったものとは無縁の世界の住人なのでぷよぷよ対戦をしながらツイッターのオタクたちについて話し合っていました。

しかし、お話ししながらゲームしながら広々とスペースを使えるのはアドバンテージですし、テレビもあるので交渉次第ではうまく使えるかも知れません。

ゲーマーの皆さんは是非



翌日は早めに起床し、ジムで大胸筋を鍛えた後、港の食堂で食事をとりました。

これについても色々書きたいですが割愛

最後は忍者寺という全く忍者に関係ない寺に行き、施設内案内ツアーに参加したのですが、キウくんが係員に私語を注意されたところがピークでした。


帰りは車の中でドヒャドヒャ笑いながら運転していたらいつの間にか大阪にいました。

今回の藤江も楽しかったですし、早く就活を終わらせて次の大会にも笑顔で出場したいですね。

では

LSTMっていうオモチャを見付けました

はじめに

これはぼくのインターンメモです。

LSTM

標語的にはリカレントニューラルネットワーク(RNN)の一種でLong short-term memoryの略だとか言われてますね。

この手法の何が他と違うかというと、ある決められた(人の手で入れる)長さのデータを保持しつつ(たまに忘却しつつ)

学習していくというところみたいですね、すごそう。下のリンクの記事は読んだ事ないですが貼ります

qiita.com


何に強いかというと時系列データだとか、文章(前後の繋がりがあるため)でその辺メインで使われてるらしい。

qiita.com
deepage.net


画像認識もいけるみたいだけど、わざわざやる意味はいまいち分かりません。

動かしてみた

株価予想とか腐る程出てくるので他のでやりたい、文章どうこうはあんまり興味がない

んで、今回は


素数予想」


やります。

CNNで素数判定!みたいな話は結構出てくるんですが、時系列データとして生成するってのはあんまり出てこなかったんで。

まぁ多分やった結果面白くなかったから誰も言ってないないとか、数学的に不可能と証明されているとかそんな感じでしょう。

とりあえず素数をDLしましょう

素数2357: 素数一覧ダウンロード

10000個のやつでやりました、計算重いからね。

毎回思うんですが、こういうcsvファイルってプログラムに読み込ませる以外の用途思いつかないのに、なんで余計なヘッダー付いてるんでしょう。

エクセルで編集はあまりいい思い出が無いので、エディタで消しましょう。

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import math
from keras.models import Sequential
from keras.models import load_model
from keras.layers import Dense
from keras.layers import LSTM
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error


#データ読み込み
dataframe = pd.read_table('primelist10000.txt')

#変数の抽出ためのデータフレーム作成
df = pd.DataFrame()

#目的変数
df['prime'] = dataframe['Number']#csvのカラム名をぼくが勝手に変えました
max_prime = max(df.prime)#データ範囲での最大値を取得
df.prime = df.prime/max_prime#絶対値0~1でスケール、LSTMはこれが推奨されてるらしい

#説明変数+上と同じ操作
df['index'] = dataframe.index
max_index = max(df.index)
df.index = df.index/max_index

#ここでnumpy-arrayにする。型は適当に設定
df = df.values
df = df.astype('float32')

#データ分割
train_size = int(len(df) * 0.9)#データの9割で学習、1割でテスト
train, test = df[0:train_size,:], df[train_size:len(df),:]

#LSTMが受け取れる形にしましょう、[データ行数][変数の個数][ルックバックの個数]みたいな形でしか受け取れない
def make_dataset(dataset, look_back=1):
    dataX, dataY = [], []
    for i in range(len(dataset)-look_back-1):
        xset = []
        for j in range(dataset.shape[1]):
            a = dataset[i:(i+look_back), j]
            xset.append(a)
        dataY.append(dataset[i + look_back, 0])
        dataX.append(xset)
    return np.array(dataX), np.array(dataY)


look_back = 10#上で出てきましたが、保持しておくデータ数で今回は適当に10とおいた
trainX, trainY = make_dataset(train, look_back)#訓練データリシェープ
testX, testY = make_dataset(test, look_back)#テストデータリシェープ

Hidden_Layer = 300#隠れ層の数、多いほどコスト上がるけど多いほどいいとかなんとか
Epochs = 1000#学習回数
Batch_Size = 10#バッチサイズ(まとまった単位で最適化する感じかな?よくわかってなさそう)

#モデル作成
model = Sequential()
model.add(LSTM(Hidden_Layer, input_shape=(testX.shape[1], look_back)))#隠れ層の指定とインプットデータの指定、ルックバックの指定
model.add(Dense(1))#出力の数
model.compile(loss='mean_squared_error', optimizer='adam')#損失関数と最適化法の指定
model.fit(trainX, trainY, epochs=Epochs, batch_size=Batch_Size)#学習開始
model.save("prime_LSTM2.h5")#学習したモデル保存
#model = load_model("prime_LSTM.h5")#読み込む時はこっち

#予測値
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)

#リスケール
trainPredict = trainPredict * max_prime
trainY = trainY * max_prime
testPredict = testPredict * max_prime
testY = testY * max_prime


# 誤差率評価
err_rate_train = (abs(trainPredict-trainY)/trainY)
err_rate_test = (abs(testPredict-testY)/testY)

#以下予測と実際の素数のプロット
test_len = len(testY)
x_pl = np.arange(test_len)
plt.scatter(x_pl,testY,label="actual")
plt.scatter(x_pl,testPredict,label="predict",color="r")
plt.legend()
plt.xlim([0,50])
plt.savefig("ac_pre.png")

#予測された数値を整数として吐き出し
np.savetxt('pre_train.csv',trainPredict.astype("int"),delimiter=',')
np.savetxt('pre_test.csv',(testPredict.astype("int")),delimiter=',')
np.savetxt('test.csv',testY.astype("int"),delimiter=',')

結果

f:id:ta_ichi:20180215231609p:plain

うーん、微妙そうだけど素数が書く軌跡?みたいなのは若干拾えてそう。わからん!

というか予測した値が実際素数かどうか判定しなきゃ意味がないですね!このプロットはなんなんだ!(一応平行移動して心眼で見る事は可能)

そのプログラムは面倒なのでまた今度回しておきます・・・。

まとめ

よくわからん。

というか、int型での推定(離散的な推定)ってそれ用に何かあるのかな

色々改善できそうだけどもうやらなさそうです。

おしまい

Are You Gorilla?

注意 本記事はネタです、ロジックの飛躍や間違いがあります。

お久しぶりです、すしくんです。

前回sym(すわむ)にバーチャルぷよぷよ対戦で勝利してからはや二年—。

未だにリアルぷよぷよ対戦で彼に勝利したことはありません。

ただ現状勝率そのものが変わらない限り人間の寿命では無理、という結論が得られているのである意味仕方ないのかもしれません。

挨拶はこのくらいにして今回のテーマについて話していきたいと思います。

ズバリ

ぴぽにあゴリラ説の実証

です。

皆さんも今まで一度は考えた事があると思います。






・・・・





・・・・・・・・・・・





・・・・・・・・・・・・・・・!!!!!!





これでわかって頂けたと思います。

———————————————————————————

しかし、いくら大勢の人が直感的にゴリラだと確信していても全員にアンケートを取るわけにもいきません・・・。

本人に「もしかしてゴリラ?」と聞いたとしても素直に答えてくれるでしょうか?

いずれにせよ客観的に評価する必要があります。




どうしたらいいのか・・・・


最近ハマっているフルグラを貪りながら考えました・・・・


なんでこんなにもフルグラは美味しいのか・・・・


なぜ・・・・・



それは____











AI・・・・機械学習・・・・!!!!

これがソリューションです。

———————————————————————————

今回主に使用したのはTensorFlowです。

TensorFlowテンソルフロー)とは、Googleが開発しオープンソースで公開している、機械学習に用いるためのソフトウェアライブラリであるんですよね。

ディープラーニングに対応しており、Googleの各種サービスなどでも広く活用されている。 2017年2月15日に TensorFlow 1.0 がリリースされた[3][4]

対応プログラミング言語C言語C++PythonJavaGo[5]。 対応OS64ビットLinux(ただしバイナリ配布はUbuntu用)、macOSWindows[6]。ハードウェアは CPU[7]NVIDIA GPU[7]Google TPU[8]Snapdragon Hexagon DSP[9] などに対応していて、Android Neural Networks API 経由で Android 端末のハードウェアアクセラレータも使用できるんですよね。

今回はpythonで書きました。

・参考記事
TensorFlowでアニメゆるゆりの制作会社を識別する


アルゴリズムはここでは詳しく書きませんが(ちゃんと説明できる気もしない)画像を大量に読み込ませる事で、その人に共通した特徴を学習していくといった感じです。

具体的には2層の畳み込みニューラルネットワークで解析したとか、そういう話もありますがそれは僕のブログの方で書きたいと思います。

そして学習後に、ゴリラ画像を入力しぴぽにあかどうか判定してもらう、という流れで今回は行きたいと思います。(ぴぽにあがゴリラならば、ゴリラを入力した時にぴぽにあと判定される)

また、今回学習に用いたぷよらーは

ぴぽにあ、Ash、キウ、ぽかりす

の顔写真です。

———————————————————————————

まずは画像集めです。これ一番辛い

過去旅行にいった時の画像からサルベージしてきたり、動画から切り抜いてきたり・・・。

集めて切り抜いて・・・・

・・・・・



頭おかしなるで


今回は精度もある程度出したいので、上記4人の顔写真を100枚程度、ぴぽにあだけ200枚集めました。

しかしまぁ今回集めたぷよらーは露出が多いので、まだ集めやすかったと思います。(顔は自動で切り抜いていたので、そこまで苦じゃありませんでした。)

そしてこれを学習していきます。



最後のtest accuracyが正答率です。92パーセントの確率で、ぴぽにあ、Ash、キウ、ぽかりすかどうかを判定できます。そこそこの精度が出ている気がします。(人物判定の相場がわからない)

———————————————————————————

ここからが本番です。

この学習済みモデルを用いて、ぴぽにあが本当にゴリラかどうか判定して行きます。

それでまたゴリラの画像を集めるわけです・・・・




APIの使い方がいまいちよくわからなかったので、手動で集めました。

「このゴリラ・・・・さっき保存した気がする・・・・いや・・・・してない??」

みたいな謎の苦しみを味わいました。

しかも人間用の顔検出にかけると



このように鼻だけが切り抜かれ、結局手動でやる羽目に・・・。




このゴリラたちをぴぽにあかどうか判定していきます。

———————————————————————————

その結果・・・

集めたゴリラのうち

75%

が、ぴぽにあであると判定されました。

う〜〜ん、どうなんでしょうこれでは微妙な気がします。

しかしゴリラも色々いるわけで、全てがぴぽにあゴリラであるとは考えられません

そこで「どの程度ぴぽにあなのか」つまり、「ぴぽにあ度」を比較していきます。

今回は

「ぴぽにあと判定された時のぴぽにあである確率の平均」

をぴぽにあ度としました。

まずはぴぽにあ自身のぴぽにあ度を見ましょう。

[ぴぽにあ、Ash、キウ、ぽかりす]

の順番で入力画像が誰なのかの確率が表示されています。




最終的にはぴぽにあ度は一番下の0.997となりました。(理想的なモデルでは1になるべき)


次にゴリラは



0.959となりました。

まとめると

・ぴぽにあのぴぽにあ度は0.997
・ゴリラのぴぽにあ度は0.959

誤差の評価は非常に面倒難しいのでやっていませんが、得られた結論としては


「ぴぽにあはほぼゴリラ」


です。

ゴリラの画像を200枚くらい集めて同じ計算をすればどんどん1に漸近していくと期待していますが、集めるのが大変なので絶対やりません。誰かゴリラの画像集めて僕に送ってください

———————————————————————————

いかがだったでしょうか?僕は結果にあまり満足していないので、また別のアプローチを考えます。

今回の大きな問題点として「そもそも4人だけの世界で判断している」ので、「4人以外」のラベルを用意し、大量の画像を学習させる必要があります。(ガチのDeep-Learningを用いた高級なアプローチもあるはずです。)

また、おそらくぴぽにあ度は本来ゴリラ全域で平均を取らなければならないとか・・・最初のモデルの精度自体が実は低いとか・・・。

しかしその辺は技術も知識も足りないので、次回かなぁ・・・。









———————————————————————————

オマケ

全ての画像の中で(ぴぽにあの画像も含む)ぴぽにあよりぴぽにあと判断されたゴリラ




Ashと判定されたゴリラ




ぽかりすと判定されたゴリラ




96パーセントの確率でぴぽにあであると判定された車





キウ君と判定されたゴリラは集めた範囲ではいませんでした・・・。

キウ君は全然ゴリラではないらしい。

TensorFlow:チュートリアル②

はいどーも♪
前回は基礎の基礎を書いたので、今回は軽い学習の章について書いて行きたいと思います。
例によって以下の焼増しです。
Getting Started  |  TensorFlow
今回はGetting Started With TensorFlowの後半と、MNIST For ML Beginnersに触れていきます。

1.最初に

全然機械学習やったことないので、僕が進めて行くのとパラレルに書いています。
信ぴょう性はこの記事もありません。
前回全コメ+ソース全文を載せてたので、今回も同様の形式でやります。
実行結果の掲載は気分次第で載せますが、載ってなかったらそういうことです。

今回の流れとしては(出来たら)

  1. すごく簡単な機械学習
  2. 手書き文字の画像認識について(概要)
  3. モデル
  4. 原理、クロスエントロピーについてなど
  5. 結果と次回

でいきたいと思います。

2.すごく簡単な機械学習(前回の続き)

前回の基本的な操作を用いて、簡単な機械学習をしていきます。(元記事の後半部分)

変数定義とかループのやり方さえ分かれば、ゴリ押しで大抵のプログラムはかけると信じています。
つまり、前回の記事がわかったら理論上なんでも書けるっていう事ですよ(クソザコプログラマー感)

学習と呼べるレベルかアヤシイですが、学習のhelloworldを見て行きましょう。
以下にいきなりコード貼ります。スラスラ読めたらそのあとの解説は読まなくていいです。

一応学習の流れだけ書いておくと

  1. 学習させたいデータを入力して、設定したモデルで計算
  2. 正解と比べてどの程度ずれているのかを計算
  3. パラメータ修正(正解に近付ける)

って感じです。まあ人間でもとりあえずトライしてみて、ミスってたらその都度やり方を変えますよね、それと同じです。

import tensorflow as tf #TensorFlowをtfとして読み込み

# モデルのパラメータ(これを変更していって入力が正解を吐き出すようにする)
W = tf.Variable([.3], dtype=tf.float32)#入力に対する重み
b = tf.Variable([-.3], dtype=tf.float32)#入力に依らない定数(バイアス)
# モデルとその入力と出力
x = tf.placeholder(tf.float32)#ここに教師データを入力
linear_model = W*x + b #モデルの式(これを計算して出力)
y = tf.placeholder(tf.float32)#ここに正解データを入れる

#正解からのずれを計算
loss = tf.reduce_sum(tf.square(linear_model - y)) # 正解とのズレの2乗和
#最適化手法(正解への近付き方にも色々有る)
optimizer = tf.train.GradientDescentOptimizer(0.01)#一番ポピュラーな最急降下法で正解に近づける
train = optimizer.minimize(loss)#上の方法で正解からのズレを小さくして行きましょう

#教え込みたいデータ
x_train = [1, 2, 3, 4]#入力データ(教師データ、今回は固定)
y_train = [0, -1, -2, -3]#正解データ(これも今回はハッキリと決まっている)
#学習
init = tf.global_variables_initializer()#変数の初期化をinitに
sess = tf.Session()#セッション打つのめんどいしsessにぶち込む
sess.run(init) #初期化(init)実行(sess.run)
for i in range(1000):#1000回学習
  sess.run(train, {x: x_train, y: y_train})#xに教師データ、yに正解データを入れて学習

#パラメータの値と正解からのズレの表示
curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x: x_train, y: y_train})#左辺にそれぞれW,b,lossを代入
print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss))#それを表示

最初は目がびっくりして追いつかない事があっても、理解出来ないってレベルではないと思いますが解説します。

まず、今回の学習の目標は線型モデルW*x + bx_train = [1, 2, 3, 4]を入れた時にy_train = [0, -1, -2, -3]が帰ってくるようにするというものです。普通に解こうと思ったら手で解けます。
正解が分かっているものを最初にやるのはとても大事なので、わざわざ機械に解かせてるわけです。

順を追って説明すると、まず始めにモデルで使う変数を定義しています。Wとかbが主役です。(繰り返しますが、これを変えていって正解を吐き出させるので)
その後、入力データxを定義し(実用上入力は動的に代入されるので初期値を入れたりする必要はない)正解データy
を定義しています。(こちらも同様)
ここから「正解との近さ」と「正解への近付き方」を定めるわけです。
まず、「正解の近さ」というのはどの様に定義されるでしょう。コードでは

loss = tf.reduce_sum(tf.square(linear_model - y)) # 正解とのズレの2乗和

これで定義されています。正解データの値と入力データをモデルにぶち込んで得られた値の差の2乗です。
これは非常にシンプルかつ直感的で良い定義だと思います。単純に自分の家と駅の離れ具合(出力と正解の差に相当)を聞かれたら、普通は距離で表しますよね(時間というのもアリですが実質同じ事です)
いわばこの「正解との距離」が0になればそれは正解な訳です。これで一つ目の「正解との近さ」は定義し終えました。
二つ目の「正解への近付き方」ですが、これは無数にあります。現実でも飛行機とか徒歩とか色々モノや場所への近付き方ありますよね(実際はこれらはあまり良い例えじゃないですが・・・)その中から一つ選ぶわけです。
今回は最急降下法(GradientDescentoMethod)を用いているので、その説明をします。
名前にGradientと入っているくらいなので、勾配を使って関数の最小値(勾配0)を探す、というアルゴリズムです。
先にアルゴリズムの式を以下に載せます。
f:id:ta_ichi:20180111200633p:plain:w200
一般的には
f:id:ta_ichi:20180111200936p:plain:w250
こんな感じでしょうか。(ここ直すのめんどいからやりませんがあんまり一般的じゃないですね)

これだけパッと見てあーーーってなるかもしれませんが一応解説します。
例として一番簡単なのは二次関数です。

わりとと数式を使う解説

f:id:ta_ichi:20180111203037p:plain:w100
わざわざこの様に書いたのにも理由があります。高校物理を思い出すと、これは加速度aで時間tだけ進んだ時の距離の式でよく見ました。右辺が今まででいう正解との距離に相当します(つまりこれを0にする作業)これを上の式に当てはめてみましょう。
f:id:ta_ichi:20180111204030p:plain:w200
こう書くとこのアルゴリズムの正体がわかりやすくなってきます。
ある時刻t^kから、適当な係数×その時刻での速さで、原点(t=0)に向かって近づいていくという式」になっています。
また、t=0を代入するとそこで更新が止まるのも確認できます。(そんなに大変じゃないので、自分でa*α=0.01、t=0.5とかで計算してみて下さい)
この時、問題はある適当な係数を速度にかけるというところで、これは大きすぎるとt=0を通り越してしまうのがわかると思います。(例えば極端な話t=1から始めてa*αが100000だったらダメですよね)
なのでそこそこ小さな値に設定しなければならないわけです。でも小さすぎると計算回数が増えてしまう・・・。こういうのは誰か熱心な人が大体この値にしとけばオッケーって決めてて、コードでは0.01になっているのはそういう事情でしょう。
正直思ったよりわかりやすい解説にならなかったのを感じている

図でなんとなく解説

f:id:ta_ichi:20180111234044j:plain:w300
関数の上に球を置くと極小値に向かうのが想像できると思います。これが最急降下法といっても良いでしょう。
点線の球の間隔がα(速度vでどの程度の時間進む事にするか)に対応します。

というわけで

アルゴリズムがわかったので、今回のヤツを見ていきましょう。
f:id:ta_ichi:20180111194956p:plain:w200
今回は変数がW,bとあってこの両方を変えながら正解との距離を縮めていくわけです。この時は

f:id:ta_ichi:20180111235606p:plain:w200
f:id:ta_ichi:20180111235629p:plain:w200
それぞれについて偏微分して二つについてどんどん傾きが小さくなる方(速度小の方)に行けば、いつか「正解までの距離」が0になる地点が見つかると思います。

注意

f:id:ta_ichi:20180112000558j:plain:w300
この場合最急降下法は使えるでしょうか?関数の上に載せられた級は明らかに手前の極小値(not最小値)にハマってしまいそうですね。
これが最急降下法の弱点で、局所解(極小値)にハマりやすいです。図のレベルならαの値をチューニングしたり、スタートの位置を変えれば最小値が見つかりますが、機械学習ではパラメータが数百とか数千とか越えることがあるみたいです。数千次元の空間で球をいろんなところから転がしていたらキリがありません。なので、他の方法を使ったりします。(他の方法でも同様の問題は抱えていますが・・・。)でも結構高級なライブラリなので、こんな単純なことだけをやる最急降下法じゃないのかもしれません。これはこれで強力な方法なので、当面はこれを使っていきます。

やっと続き

話がそれたというか本筋にやっと戻りますが、こうして正解との距離を縮めて学習していくわけです。
上を実行すると

W: [-0.9999969] b: [ 0.99999082] loss: 5.69997e-11

と出てくると思います。W=-1とb=1を突っ込むとxを入力したときに正解のyが帰ってくるのがすぐに確かめられるので、上手に学習できていることが確認できました。めでたしめでたし

予告

簡単な学習なので、簡単に書くつもりが長くなってしまいました。
残りはチュートリアル③にまわしていきたいと思います。
今週中には書きたい・・・。
あと最近やっとDeep MNIST for Expertsのコンテンツへの理解がやっと追いついてきたので、もうちょっと高級な記事もかけるかもしれない。(初心者の域を脱さない)

TensorFlow:チュートリアル①

正月暇過ぎて(やる事はあるけど研究室の計算機に入れない)TensorFlowの勉強をしました。
適当にまとめておこうと思います、基本的には個人用というか僕の理解で適当に書く予定です。
あってるか間違ってるか知らないよ、という事

1.最初に

出展元は基本的にはこれ
Getting Started  |  TensorFlow
ここGetting Started With TensorFlowからボチボチまとめて行きます。
もっと言うと検索すると掃いて捨てるほど翻訳記事とかあるから、そっち見た方がいいかも…
一応差別化的な意味合いで物理っぽい視点から書けたらいいなとかは思ってます。(今回は無理)

想定される読者は

  1. pythonのプログラミングよく分かってない人(僕)
  2. 簡単に機械学習を体験してみたい人(僕)
  3. なんか今はなんも知らんけどゆくゆくはDeep-Learning触りたい人(僕)

俺得でしかなさそう

2.TensorFlowの基本

よく分かってないのに基本を書いていきます、ええ。
pythonやってる人は読めばすんなり入っていくタイプの奴だと思う(クラスとかオブジェクトとか無縁なプログラミングばっかしてるから慣れない)
導入の方法は調べて下さい・・・。
qiita.com
僕はこれ参考にした流れで入れました。

・TensorFlowって何

僕が聞きたい、凄いpythonのライブラリ・・・?
テンソルの計算が上手いらしい。(テンソルが得意でイメージつかなければ、行列とかの線型代数得意マンを想像すればよさそう)
Deep-Learningにも使われてそう。

・TensorFlowをとりあえず動かす
import tensorflow as tf #TensorFlowライブラリをtfとして読み込みますよ
node1 = tf.constant(3.0, dtype=tf.float32) #node1に定数3を代入、型は浮動小数点単精度です
node2 = tf.constant(4.0) #node2に定数4を代入します
print(node1, node2) #node1,node2を表示します

これが所謂HelloWorld的なヤツ?になってそう。単純に変数に定数を入れただけ。
ここで思ったのは(pythonド初心者並感)

  • 一々tf.を付ける(オブジェクトなんちゃらのアレ?本当に詳しくないから知らない)
  • 変数名nodeってわざわざ書くの意味あるんか?重過ぎん?最初ならx、yでええやん
  • constantでわざわざ用意されてるのなんでや
  • printで変なのでてくるけど?

ってな感じ。
解答としては

  • そうっぽい?知らん
  • そもそも変数のイメージがグラフ理論的になってそう、独立した箱というより変数同志の「繋がり」を重視したイメージ?(かっちょいい図を手描きしました)そもそもグラフ理論の言葉でこの丸いヤツをノードっていうからそれはそうなのかも。

f:id:ta_ichi:20180104023219j:plain:w300

  • 調べるとどうやらあとから値を変えたりする事が出来ないように用意されているらしい。Fortranでいうparameter指定(誰にもつたわらない)
  • これは以下に詳しく書く

なんか値としてはき出させるにはSessionしなきゃダメらしい、僕の中のイメージでは実行ボタンとか、コンパイルに近い。

import tensorflow as tf #TensorFlowライブラリをtfとして読み込みますよ
node1 = tf.constant(3.0, dtype=tf.float32) #node1に定数3を代入、型は浮動小数点単精度です
node2 = tf.constant(4.0) #node2に定数4を代入します
#これを新たに書く
sess = tf.Session() #セッションを打ち込むの面倒だからsessにします
print(sess.run([node1, node2]))#node1,node2を実行(3.0,4.0と出てくるはず)

これで値としてやっとはき出されますね!ハローワールドにしてはめんどい!!!!!
あと地味にsess = tf.Session()ってFortran使ってると目がびっくりする、関数をぶち込んでるようなものなので

・もうちょっと動かす

定数をはき出させただけでしたが、足し算したりなんたりしてみましょう。

import tensorflow as tf #TensorFlowライブラリをtfとして読み込みますよ
from __future__ import print_function #なんかからprintの関数持ってきますよ(これ分かってない)

node1 = tf.constant(3.0, dtype=tf.float32) #node1に定数3を代入、型は浮動小数点単精度です
node2 = tf.constant(4.0) #node2に定数4を代入します
node3 = tf.add(node1, node2) #node1とnode2を足し算しましょう!

sess = tf.Session() #セッションを打ち込むの面倒だからsessにします
print("node3:", node3) #7じゃないよ
print("sess.run(node3):", sess.run(node3)) #ちゃんとセッションして実行すると7になるよ

これが足し算、tf.addってところでやってるのでコレはわかりやすいと思います。
上のかっこいい図の右端が足し算のイメージ

import tensorflow as tf #TensorFlowライブラリをtfとして読み込みますよ
from __future__ import print_function #なんかからprintの関数持ってきますよ(これ分かってない)

a = tf.placeholder(tf.float32) #aに浮動小数点単精度の値を後で入れるよ
b = tf.placeholder(tf.float32) #bに浮動小数点単精度の値を後で入れるよ
adder_node = a + b  #まだ値は決まってないけど足し算したものを左辺に入れるよ

sess = tf.Session() #セッションを打ち込むの面倒だからsessにします
print(sess.run(adder_node, {a: 3, b: 4.5})) 
#aに定数3bに定数4.5を入れてその足した奴を表示+実行
print(sess.run(adder_node, {a: [1, 3], b: [2, 4]})) 
#aとbに定ベクトル入れて足し算した奴を表示+実行

コレが一番pythonプログラミングというか普通な感じしますね。
変数宣言して入れて、計算して・・・といった素朴なコードです。

でも変数〜〜って感じのヤツは次の方で(もしかしたら大きな仕様の違いがあるかも、分からんけど)

import tensorflow as tf #TensorFlowライブラリをtfとして読み込みますよ
from __future__ import print_function #なんかからprintの関数持ってきますよ(これ分かってない)

W = tf.Variable([.3], dtype=tf.float32) #Wに0.3を入れる、これは後から変更可能
b = tf.Variable([-.3], dtype=tf.float32) #bに−0.3を入れる、これは後から変更可能
x = tf.placeholder(tf.float32) #浮動小数点単精度の値を後で入れるよ
linear_model = W*x + b #この計算をするよ、そして左辺ににぶち込む

sess = tf.Session() #セッションを打ち込むの面倒だからsessにします
init = tf.global_variables_initializer() #グローバル変数とか初期化
sess.run(init) #初期化実行

print(sess.run(linear_model, {x: [1]})) #x=1で上の式を計算するよ

まぁ上との違いは先に値を入れてるとこですかね?それ以外はよくわかりません、あとはテンソルのランク(ベクトルか、定数かとか)を先に決めてるのかな?
あとは tf.global_variables_initializer()ですが、これは無くても動くけどやった方が大概いい系のヤツだと思います。
どんどん足し算していく時とかに、最初初期化しないとヤバめな事起こったりするアレ防止とか・・・?

まあ今回はこのくらいにしときますか。

終わりに

今回はプログラム全コメ+毎回の全文貼りとかにしたけど、どうでしょうか?
僕がこうだったらいいかなぁと思って勝手にやったので、読む人にはどうなんでしょう。

次は冒頭のサイトで、これらを使って軽い学習をしてるコンテンツの説明と、その次のMNIST For ML Beginnersに載ってる画像認識のところまで行けたらいいかなぁ。
画像認識の所はもうちょい理解してからじゃないと書くのが怖いかも。

教授「ワイーーーーー!相図を書けーーー!!」ドン!!! ワイ「き、教授ァ・・・」ポロポロ

ワイ「で、でもワイ、、、先週原理上書けないって説明したゾ、、、」

教授「うるせェ!!!!カけ!!!!!!」ドン!!!

教授「俺は俺の言うことを聞く奴が好きだ!!!」ニィ

俺「う、う゛う゛、、、き゛ょう゛じゅ、、、、」ポロポロ

 

その後色々あって炎上しました。(途中で改変めんどくなったので気が向いたら足します)


  

アニメをみました

アニメをみました。(3本程度)

 

いっぽんめはイナズマイレブン

f:id:ta_ichi:20170704215048j:plain

 

とある事情で見始めたアニメ、これがなかなかに面白い。あえて例えるならば「テンポのいいドラゴンボールと言ったところ。

つまり

 

1. 敵が来る(めっちゃ強い)

2. 大敗する(10−0とかで)

3. 3日間くらい練習する(最大でも一週間)

4. めっちゃ強くなる、勝つ。

 

を淡々と繰り返すアニメである。無駄な回想もあまりなく、主人公はあの手この手を使って味方を励ましてくる、作中でうつ病になったのも1回だけというメン強キャラ。あとすぐ強くなる。

加えて、このアニメ教育アニメでもあるので、途中で「食べ物をよく噛む特訓」とか出て来る、実に素晴らしい。

 

ただ上の感想は真実であり、本心だが、このアニメには他にも色々な楽しみ方がある。

f:id:ta_ichi:20170704220446j:plain

 

この囲まれた明らかにブサイクなキャラたちは2期で怪我により退場させられるし、3期ではまるで出てこない。代わりにイケメンキャラが補充されイナズイレブン(チーム名)はイケメンホスト集団に変貌を遂げていくのだ。

f:id:ta_ichi:20170704221105p:plain

こいつらは2期でいきなり出てきた宇宙人に怪我させられてそこから全然出てこない(何なら2期最終話付近で敵に操られる)理由はイケメンでないからとかだろう。

f:id:ta_ichi:20170704221228p:plain

こいつは途中でついていけなくなって「もう無理でヤンス」とか言っていなくなるくせに3期で復活して、復活したと思ったら怪我して一人で飛行機に乗って日本に帰る。

f:id:ta_ichi:20170704221417p:plain

こいつは顔が酷似している上に強いキャラが出てきていなくなる。

 

他にも色々ツッコミどころの多いアニメだが必殺技はかっこいいし、キャラはひたむきに頑張るので元気をもらえる。いいアニメ、128話見る価値アリ。

 

 

にほんめはゼロの使い魔

f:id:ta_ichi:20170704221640j:plain

 

一言で言うなら、えっちアニメ

ニコニコでなんかの記念か知らないけど、ランキング載ってたから1〜4期一気に見てしまった。

このアニメは僕が中学生くらいの頃にバカみたいに流行ってた、今で言う所の「異世界召喚モノ」の火付け役と言った立ち位置。なんだかんだ中学から3週くらい見ている。

 

見所は何と言ってもキャラの可愛さだろう、声優も今の中堅クラス以上だらけでそう言う観点でも楽しめる。

f:id:ta_ichi:20170704222039j:plain

ルイズちゃん・・・・・可愛くないか!?

今のアニメも相当原画が可愛くなってて作画も綺麗だけど十分前線レベルだと思う。性格も今の設定凝り凝りのやつと違って、シンプルに感情が表現されてて良い。

内容は特に話すこともないので割愛。キャラが可愛い、これは正義。

 

全然関係ないけどゼロの使い魔SS最近全然見ないので悲しい。昔は1期丸々書き換えたSSとかよくあったのに・・・。

 

 

さんほんめ「結城優奈は勇者である」

f:id:ta_ichi:20170704222500j:plain

前からずっと気になってたけど、この前劇場にオタクアニメ見にいったら、10月から始まる2期の先行上映とかやってるみたいで、どうせならと一気に見た。(イナズマイレブンを経験してからと言うものの12話が異常に短く感じる。)

見始めた理由はキャラがえっちそうだから、あと可愛いから。

内容はおそらく時期的に見ても「魔法少女マドカマギカ」を意識したもの担っていると思う。一見可愛らしい少女たちが戦うことになるけど、なんで戦わされてるのか・・・とかその辺の設定からやんわり感じる。

例えば

f:id:ta_ichi:20170704223431j:plain

 

こんなイケイケで元気そうなお嬢さんも

 

 

f:id:ta_ichi:20170704223501j:plain

こうなってしまう。

 

理由は「必殺技1回につき、身体機能が1つ失われる」から。

上のかりんちゃんは、なんかいきなり必殺技5回くらい打ち始めて目と耳両足片手が使えない身体障害者になってしまった。

 

でもまどマギとの差別化をしたかったのかハッピーエンド(?)みたいな感じで終わる。ただ全然何も解決しないまま終わるから2期が楽しみな作品の一つ。

てかいま最初の画像見て思ったけど左端の女の子誰や、知らんぞ。

 

 

以上、最近見たアニメの感想。他にも最近は「KING OF PRISM -PRIDE the HERO-」とか「魔法科高校の劣等生 星を呼ぶ少女」とか劇場で見た、面白かった。

プリティーリズムレイボーライブ関連の話もいつか書きたい。その前にオタクは全員全話見てくれよな。

 

ーーーーーーーーーーーーーーーーーーーー

 

P.S

C言語のおべんつよは順調(?)あともう少しで参考書が一つ終わるので次はpythonに取り掛かる。

 

インターンシップ2敗。

強い企業にしか出してない上に、ある一定の関連はあるものの、基本専攻とは全然違う分野にしか出していないので・・・とポジティブに考えることにした。あとはこれがきかっけでいろんな勉強を開始できたのでいいっちゃ良い。

 

・前記事にも関連するが、自分の興味の方向が割と固まってきているのを感じている。今更感はあるけど・・・・・結果的には統計よりの物理を攻めたいと言ったところ。具体的にはDに行く場合、統計数理研究所とかその辺にいきたいと思うようになってきた、そのうちに研究室訪問をしようと思う。

 

・ある本を読んでいたら、ナンプレを物理的解釈に当てはめて数値計算をする、とか言う面白そうなトピックを見つけた。構想は若干あるので(的外れかもしれないけど)ぷよぷよと絡められた計算をしてみたい。(実際コーディングは始めたけど詰まっている)